CONTAINMENT SYSTEMS # 3/4.6.2 DEPRESSURIZATION AND COOLING SYSTEMS # CONTAINMENT SPRAY SYSTEM # LIMITING CONDITION FOR OPERATION 3.6.2.1 Two independent containment spray systems shall be OPERABLE with each spray system capable of taking suction from the RWST and transferring suction to the RHR pump discharge. APPLICABILITY: MODES 1, 2, 3 and 4. # ACTION: With one containment spray system inoperable, restore the inoperable spray system to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours; restore the inoperable spray system to OPERABLE status within the next 48 hours or be in COLD SHUTDOWN within the following 30 hours. # SURVEILLANCE REQUIREMENTS - 4.6.2.1 Each containment spray system shall be demonstrated OPERABLE: - a. At least once per 31 days by verifying that each valve (manual, power operated or automatic) in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct position. - b. By verifying, that on recirculation flow, each pump develops a differential pressure of greater than or equal to 204 psid when tested pursuant to Specification 4.0.5. - c. At least once per 18 months during shutdown, by: - 1. Verifying that each automatic valve in the flow path actuates to its correct position on a Containment High-High pressure test signal. - 2. Verifying that each spray pump starts automatically on a Containment High-High pressure test signal. - d. Following activities that could result in nozzle blockage, either evaluate the work performed to determine the impact to the containment spray system, or perform an air or smoke flow test through each spray header and verifying each spray nozzle is unobstructed. ### 3/4.6.2 DEPRESSURIZATION AND COOLING SYSTEMS #### 3/4.6.2.1 CONTAINMENT SPRAY SYSTEM The OPERABILITY of the containment spray system ensures that containment depressurization and cooling capability will be available in the event of a LOCA. The pressure reduction and resultant lower containment leakage rate are consistent with the assumptions used in the accident analyses. Normal plant operation and maintenance practices are not expected to trigger surveillance requirement 4.6.2.1.d. Only an unanticipated circumstance would initiate this surveillance, such as inadvertent spray actuation, a major configuration change, or a loss of foreign material control when working within the affected boundary of the system. If an activity occurred that presents the potential of creating nozzle blockage, an evaluation would be performed by the engineering organization to determine if the amount of nozzle blockage would impact the required design capabilities of the containment spray system. If the evaluation determines that the containment spray system would continue to perform its design basis function, then performance of the air or smoke flow test would not be required. If the evaluation cannot conclusively determine the impact to the containment spray system, then the air or smoke flow test would be performed to determine if any nozzle blockage has occurred. # 3/4.6.2.2 SPRAY ADDITIVE SYSTEM The OPERABILITY of the spray additive system ensures that sufficient NaOH is added to the containment spray in the event of a LOCA. The limits on NaOH minimum volume and concentration, ensure that 1) the iodine removal efficiency of the spray water is maintained because of the increase in pH value, and 2) corrosion effects on components within containment are minimized. The contained water volume limit includes an allowance for water not usable because of tank discharge line location or other physical characteristics. These assumptions are consistent with the iodine removal efficiency assumed in the accident analyses. ### 3/4.6.2.3 CONTAINMENT COOLING SYSTEM The OPERABILITY of the containment cooling system ensures that adequate heat removal capacity is available when operated in conjunction with the containment spray systems during post-LOCA conditions. The surveillance requirements for the service water accumulator vessels ensure each tank contains sufficient water and nitrogen to maintain water filled, subcooled fluid conditions in three containment fan coil unit (CFCU) cooling loops in response to a loss of offsite power, without injecting nitrogen covergas into the containment fan coil unit loops assuming the most limiting single failure. The surveillance requirement for the discharge BASES valve response time test ensures that on a loss of offsite power, each discharge valve actuates to the open position in accordance with the design to allow sufficient tank discharge into CFCU piping to maintain water filled, subcooled fluid conditions in three CFCU cooling loops, assuming the most limiting single failure. ### 3/4.6.3 CONTAINMENT ISOLATION VALVES The OPERABILITY of the containment isolation valves ensures that the containment atmosphere will be isolated from the outside environment in the event of a release of radioactive material to the containment atmosphere or pressurization of the containment. Containment isolation within the time limits specified ensures that the release of radioactive material to the environment will be consistent with the assumptions used in the analyses for a LOCA. The opening of locked or sealed closed containment isolation valves (penetration flow paths) on an intermittent basis under administrative control includes the following considerations: (1) stationing a dedicated individual, who is in constant communication with the control room, at the valve controls, (2) instructing this individual to close these valves in an accident situation, and (3) assuring that environmental conditions will not preclude access to close the valves and that this action will prevent the release of radioactivity outside the containment. The main steam isolation valves (MISVs) serve as automatic containment isolation valves when secondary side steam pressure is sufficient to close the valves. However, in the event that secondary side steam pressure is not sufficient to automatically close the MSIVs, the MISVs fulfill their containment isolation function as remote-manual containment isolation valves. # 3/4.6.4 COMBUSTIBLE GAS CONTROL The OPERABILITY of the equipment and systems required for the detection and control of hydrogen gas ensures that this equipment will be available to maintain the hydrogen concentration within containment below its flammable limit during post-LOCA conditions. Either recombiner unit is capable of controlling the expected hydrogen generation associated with 1) zirconiumwater reactions, 2) radiolytic decomposition of water and 3) corrosion of metals within containment. #### 3/4.6.2 DEPRESSURIZATION AND COOLING SYSTEMS #### CONTAINMENT SPRAY SYSTEM # LIMITING CONDITION FOR OPERATION 3.6.2.1 Two independent containment spray systems shall be OPERABLE with each spray system capable of taking suction from the RWST and transferring suction to the RHR pump discharge. APPLICABILITY: MODES 1, 2, 3 and 4. # ACTION: With one containment spray system inoperable, restore the inoperable spray system to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours; restore the inoperable spray system to OPERABLE status within the next 48 hours or be in COLD SHUTDOWN within the following 30 hours. #### SURVEILLANCE REQUIREMENTS - 4.6.2.1 Each containment spray system shall be demonstrated OPERABLE: - a. At least once per 31 days by verifying that each valve (manual, power operated or automatic) in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct position. - b. By verifying, that on recirculation flow, each pump develops a differential pressure of greater than or equal to 204 psid when tested pursuant to Specification 4.0.5. - c. At least once per 18 months during shutdown, by: - 1. Verifying that each automatic valve in the flow path actuates to its correct position on a Containment High-High pressure test signal. - Verifying each spray pump starts automatically on a Containment High-High pressure test signal. - d. Following activities that could result in nozzle blockage, either evaluate the work performed to determine the impact to the containment spray system, or perform an air or smoke flow test through each spray header and verifying each spray nozzle is unobstructed. #### 3/4.6.2 DEPRESSURIZATION AND COOLING SYSTEMS #### 3/4.6.2.1 CONTAINMENT SPRAY SYSTEM The OPERABILITY of the containment spray system ensures that containment depressurization and cooling capability will be available in the event of a LOCA. The pressure reduction and resultant lower containment leakage rate are consistent with the assumptions used in the accident analyses. The containment spray system and the containment cooling system are redundant to each other in providing post accident cooling of the containment atmosphere. However, the containment spray system also provides a mechanism for removing iodine from the containment atmosphere and therefore the time requirements for restoring an inoperable spray system to OPERABLE status have been maintained consistent with that assigned other inoperable ESF equipment. Normal plant operation and maintenance practices are not expected to trigger surveillance requirement 4.6.2.1.d. Only an unanticipated circumstance would initiate this surveillance, such as inadvertent spray actuation, a major configuration change, or a loss of foreign material control when working within the affected boundary of the system. If an activity occurred that presents the potential of creating nozzle blockage, an evaluation would be performed by the engineering organization to determine if the amount of nozzle blockage would impact the required design capabilities of the containment spray system. If the evaluation determines that the containment spray system would continue to perform its design basis function, then performance of the air or smoke flow test would not be required. If the evaluation cannot conclusively determine the impact to the containment spray system, then the air or smoke flow test would be performed to determine if any nozzle blockage has occurred. # 3/4.6.2.2 SPRAY ADDITIVE SYSTEM The OPERABILITY of the spray additive system ensures that sufficient NaOH is added to the containment spray in the event of a LOCA. The limits on NaOH volume and concentration, ensure that 1) the iodine removal efficiency of the spray water is maintained because of the increase in pH value, and 2) corrosion effects on components within containment are minimized. The contained water volume limit includes an allowance for water not usable because of tank discharge line location or other physical characteristics. These assumptions are consistent with the iodine removal efficiency assumed in the accident analyses. # 3/4.6.2.3 CONTAINMENT COOLING SYSTEM The OPERABILITY of the containment cooling system ensures that adequate heat removal capacity is available when operated in conjunction with the containment spray systems during post-LOCA conditions. The containment cooling system and the containment spray system are redundant to each other in providing post accident cooling of the containment atmosphere. As a result of this redundancy in cooling capability, the allowable out of service time requirements for the containment cooling system have been appropriately adjusted. However, the allowable out of service time requirements for the containment spray system have been maintained consistent with that assigned other inoperable ESF equipment since the containment spray system also provides a mechanism for removing iodine from the containment atmosphere. The surveillance requirements for the service water accumulator vessels ensure each tank contains sufficient water and nitrogen to maintain water filled, subcooled fluid conditions in three containment fan coil unit (CFCU) cooling loops in response to a loss of offsite power, without injecting nitrogen covergas into the containment fan coil unit loops assuming the most limiting single failure. The surveillance requirement for the discharge valve response time test ensures that on a loss of offsite power, each discharge valve actuates to the open position in accordance with the design to allow sufficient tank discharge into CFCU piping to maintain water filled, subcooled fluid conditions in three CFCU cooling loops, assuming the most limiting single failure. # 3/4.6.3 CONTAINMENT ISOLATION VALVES The OPERABILITY of the containment isolation valves ensures that the containment atmosphere will be isolated from the outside environment in the event of a release of radioactive material to the containment atmosphere or pressurization of the containment. Containment isolation within the time limits specified ensures that the release of radioactive material to the environment will be consistent with the assumptions used in the analyses for a LOCA. The opening of locked or sealed closed containment isolation valves (penetration flow paths) on an intermittent basis under administrative control includes the following considerations: (1) stationing a dedicated individual, who is in constant communication with the control room, at the valve controls, (2) instructing this individual to close these valves in an accident situation, and (3) assuring that the environmental conditions will not preclude access to close the valves and that this action will prevent the release of radioactivity outside the containment. The main steam isolation valves (MSIVs) serve as automatic containment isolation valves when secondary side steam pressure is sufficient to close the valves. However, in the event that secondary side steam pressure is not sufficient to automatically close the MSIVs, the MSIVs fulfill their containment isolation function as remote-manual containment isolation valves. #### 3/4.6.4 COMBUSTIBLE GAS CONTROL The OPERABILITY of the equipment and systems required for the detection and control of hydrogen gas ensures that this equipment will be available to maintain the hydrogen concentration within containment below its flammable limit during post-LOCA conditions. Either recombiner unit is capable of controlling the expected hydrogen generation associated with 1) zirconiumwater reactions, 2) radiolytic decomposition of water, and 3) corrosion of metals within containment. These hydrogen control systems are consistent with the recommendations of Regulatory Guide 1.7, "Control of Combustible Gas Concentrations in Containment Following a LOCA," March 1971.